

31st Austrian Mathematical Olympiad Regional Competition for Advanced Students April 13, 2000

- 1. For which non-negative integers $n \operatorname{does} 2^n > 10n^2 60n + 80 \operatorname{hold}?$
- 2. For each real number a determine all real numbers x such that the following equation holds.

$$(2x+1)^4 + ax(x+1) - \frac{a}{2} = 0$$

- 3. We consider two circles k_1 and k_2 with midpoints M_1 and M_2 and radii r_1 and r_2 , with $z = M_1M_2 > r_1 + r_2$ and an outer tangent that touches the circles in P_1 and P_2 (both lying on the same side of the line M_1M_2). We now change the radii such that $r_1 + r_2 = c$ remains constant. Determine all possible locations for the midpoint of P_1P_2 when r_1 varies from 0 to c.
- 4. We consider the sequence $\langle u_n \rangle$ defined by the recursion $u_{n+1} = \frac{u_n(u_n+1)}{n}$ for $n \ge 1$.
 - (a) Determine the elements of the sequence for $u_1 = 1$.
 - (b) Show that if one element of the sequence is a non-integer rational number, then also all further sequence elements are not integers.
 - (c) Show that for each non-negative integer K there exists a $u_1 > 1$ such that the first K elements of the sequence are integers.