

$54^{\text {th }}$ Austrian Mathematical Olympiad

Problem 1. Let a, b, c, d be real numbers with $0<a, b, c, d<1$ and $a+b+c+d=2$. Show that

$$
\sqrt{(1-a)(1-b)(1-c)(1-d)} \leq \frac{a c+b d}{2}
$$

Are there infinitely many cases of equality?
(Josef Greilhuber)

Solution. Squaring the given inequality and multiplying by 16, we get

$$
(2-2 a)(2-2 b)(2-2 c)(2-2 d) \leq 4(a c+b d)^{2} .
$$

We homogenize by replacing the first 2 in each parenthesis on the left side by $a+b+c+d$ and get the homogeneous inequality

$$
(b+d-(a-c))(a+c-(b-d))(b+d+a-c)(a+c+b-d) \leq 4(a c+b d)^{2} .
$$

We evaluate the left-hand side by repeatedly combining two factors and get

$$
\begin{aligned}
& (b+d-(a-c))(a+c-(b-d))(b+d+a-c)(a+c+b-d) \\
& =\left((a+c)^{2}-(b-d)^{2}\right)\left((b+d)^{2}-(a-c)^{2}\right) \\
& =\left(2 a c+2 b d+a^{2}+c^{2}-b^{2}-d^{2}\right)\left(2 a c+2 b d-a^{2}-c^{2}+b^{2}+d^{2}\right) \\
& =4(a c+b d)^{2}-\left(a^{2}+c^{2}-b^{2}-d^{2}\right)^{2} \leq 4(a c+b d)^{2},
\end{aligned}
$$

which proves the inequality.
Equality holds for $a^{2}+c^{2}=b^{2}+d^{2}$, in particular for $a=b$ and $c=d=1-a$ with $0<a<1$. Therefore, there are infinitely many equality cases.
(Josef Greilhuber)

Problem 2. Let $A B C$ be a triangle. Let P be the point on the extension of $B C$ beyond B such that $B P=B A$. Let Q be the point on the extension of $B C$ beyond C such that $C Q=C A$.

Prove that the circumcenter O of the triangle $A P Q$ lies on the angle bisector of the angle $\angle B A C$.
(Karl Czakler)

Solution. Since $A C Q$ is an isosceles triangle, the perpendicular bisector of $A Q$ is the angle bisector of $\angle Q C A$. But the perpendicular bisector of $A Q$ also passes through the circumcenter O of the triangle $A P Q$.

Therefore, O lies on the angle bisector of $\angle Q C A$ which is the exterior angle bisector of $\angle A C B$ by definition of Q.

Analogously, the point O lies also on the exterior angle bisector of $\angle C B A$. Therefore, the point O is the intersection of the two exterior angle bisectors which makes it the excenter of the excircle of $A B C$ tangent to $B C$. This excenter lies on the angle bisector of $\angle B A C$ as desired.
(Theresia Eisenkölbl)

Figure 1: Problem 2

Problem 3. Let n be a positive integer. What proportion of the non-empty subsets of $\{1,2, \ldots, 2 n\}$ has a smallest element that is odd?
(Birgit Vera Schmidt)
Solution. The number of subsets of $\{1,2, \ldots, 2 n\}$ that have k as smallest element is $2^{2 n-k}$ for $1 \leq k \leq 2 n$ since each element bigger than k is either contained in the subset or not.

The number O of subsets with an odd smallest element is therefore equal to

$$
O=2^{2 n-1}+2^{2 n-3}+\cdots+2^{3}+2^{1}=2 \cdot\left(4^{n-1}+4^{n-2}+\cdots+4^{1}+4^{0}\right)
$$

The number E of subsets with an even smallest element is equal to

$$
E=2^{2 n-2}+2^{2 n-4}+\cdots+2^{2}+2^{0}=4^{n-1}+4^{n-2}+\cdots+4^{1}+4^{0} .
$$

This implies $O=2 E$ and consequently the desired proportion is $2 / 3$.
(Birgit Vera Schmidt)
Problem 4. Determine all pairs of positive integers (n, k) for which

$$
n!+n=n^{k}
$$

holds.
(Michael Reitmeir)
Answer. The only solutions are $(2,2),(3,2)$ and $(5,3)$.
Solution. Because of $n!+n>n$, we immediately get $k \geq 2$. We divide both sides of the equation by n and get

$$
(n-1)!+1=n^{k-1}
$$

Now, we distinguish two cases:

- n is not a prime.

Since n is clearly not 1 , we can write n as $n=a b$ for integers a, b with $1<a, b<n$ which implies $1<a \leq n-1$ and therefore $a \mid(n-1)$!. We conclude that $a>1$ is relatively prime to the left-hand side $(n-1)!+1$, but a divides the right-hand side n^{k-1}. This is not possible, so there are no solutions in this case.

- n is a prime.

We check $n=2,3,5$ and find the solutions $(2,2),(3,2)$ and $(5,3)$.
From now on, let $n \geq 7$. We get

$$
\begin{array}{rlrl}
& & (n-1)! & =n^{k-1}-1 \\
\Longrightarrow \quad(n-1)! & =\left(1+n+n^{2}+\cdots+n^{k-2}\right)(n-1) \\
\Longrightarrow \quad(n-2)! & =1+n+n^{2}+\cdots+n^{k-2}
\end{array}
$$

Since n is prime and bigger than 3 , the number $n-1$ is even and not a prime. Furthermore, $n-1$ is not the square of a prime since 4 is the only even square of a prime and $n-1 \geq 6$. Therefore, we get $n-1=a b$ with $1<a, b \leq n-1$ and $a \neq b$. We obtain that $(n-2)$! contains the separate factors a and b and is therefore divisible by $a b=n-1$ which implies $(n-2)!\equiv 0 \bmod (n-1)$. Furthermore, $n \equiv 1 \bmod (n-1)$, and therefore

$$
0 \equiv 1+1+1^{2}+\cdots+1^{k-2} \equiv k-1 \bmod (n-1)
$$

We conclude that $n-1$ divides $k-1$ and we write $k-1=l(n-1)$ for a positive integer l. The case $k=1$ and $l=0$ has already been treated. Therefore, we get $k-1 \geq n-1$.
However,

$$
(n-1)!=1 \cdot 2 \cdot 3 \cdots(n-1)<\underbrace{(n-1) \cdot(n-1) \cdots(n-1)}_{n-1 \text { times }}=(n-1)^{n-1}
$$

and therefore

$$
n^{k-1}=(n-1)!+1 \leq(n-1)^{n-1}<n^{n-1} \leq n^{k-1}
$$

giving a contradiction. So there are no further solutions.

