

$44^{\text {th }}$ Austrian Mathematical Olympiad

Beginners' Competition
June $13^{\text {th }}, 2013$

Problem 1. Find all integers $n>1$ such that the sum of n and its second-largest divisor is 2013.
R. Henner, Vienna

Solution. The second-largest divisor of n is of the form $\frac{n}{p}$ where p is the smallest prime that divides n.

The given condition gives $2013=n+\frac{n}{p}=\frac{n}{p}(p+1)$. Therefore, $p+1$ is a divisor of 2013 and thus odd. So, p is 2 , the only even prime.

The equation now becomes $2013=\frac{n}{2} \cdot 3$ which gives the unique solution $n=1342$.
(T. Eisenkölbl)

Problem 2. Find the number of paths from square A to square Z in the figure below where a path consists of steps from a square to its upper or right neighbouring square.

W. Janous, WRG Ursulinen, Innsbruck

Solution. For every square in the figure, we will count the number of ways from square A to this square and will write this number inside the square.

For A itself, this number is 1 , since there is only one way to stay in A.
If a square has a left and a lower neighbour square, the number of paths to this square is the sum of the two numbers in these two neighbours.

a	$a+b$
	b

If a square has only one of these two neighbours, then all paths have to pass through this neighbour, so the number of ways from A is the same for the square and its neighbour.

Therefore, we can recursively fill the squares with the numbers of paths from A. We get the following result:

The final answer for the number of ways from A to Z is therefore 486 .
(T. Eisenkölbl)

Problem 3. Let a and b be real numbers with $0 \leq a, b \leq 1$.
Prove that

$$
\frac{a}{b+1}+\frac{b}{a+1} \leq 1
$$

and find the cases of equality.
K. Czakler, Vienna

Solution. We clear denominators to get

$$
\begin{array}{rlrl}
& a(a+1)+b(b+1) & \leq(a+1)(b+1), \\
\Leftrightarrow & a^{2}+a+b^{2}+b & \leq a b+a+b+1, \\
\Leftrightarrow & a^{2}-a+b^{2}-b & \leq a b-a-b+1, \\
\Leftrightarrow & a(a-1)+b(b-1) & \leq(a-1)(b-1), \\
\Leftrightarrow & & (1-a)(1-b)+a(1-a)+b(1-b) & \geq 0 .
\end{array}
$$

The three terms on the left-hand side of the last inequality are clearly all positive or zero for $0 \leq a, b \leq 1$.

For equality to hold, all three terms have to be zero, that is, $a=1$ or $b=1$ and $a, b \in\{0,1\}$.

This gives the three pairs $(a, b)=(1,0),(a, b)=(0,1)$ and $(a, b)=(1,1)$.
(T. Eisenkölbl)

Problem 4. Let $A B C$ be an acute triangle and D be a point on the altitude through C.
Prove that the mid-points of the line segments $A D, B D, B C$ and $A C$ form a rectangle.
G. Anegg, Innsbruck

Solution. The problem is represented in the following figure:

We denote with $M_{X Y}$ the mid-point of the line segment $X Y$.
Using the intercept theorem, we deduce that

- $M_{A D} M_{B D}$ is parallel to $A B$.
- $M_{A C} M_{B C}$ is parallel to $A B$.
- $M_{A C} M_{A D}$ is parallel to $C D$.
- $M_{B C} M_{B D}$ is parallel to $C D$.

Therefore, $M_{A D} M_{B D}$ is parallel to $M_{A C} M_{B C}$ and $M_{A C} M_{A D}$ is parallel to $M_{B C} M_{B D}$. Furthermore, $M_{A C} M_{B C}$ is orthogonal to $M_{A C} M_{A D}$, since $C D$ is orthogonal to $A B$. Therefore, the four mid-points form a rectangle.
(G. Anegg)

