
$46^{\text {th }}$ Austrian Mathematical Olympiad

Regional Competition (Qualifying Round)
March 26, 2015

1. Determine all triples (a, b, c) of positive integers satisfying the conditions

$$
\operatorname{gcd}(a, 20)=b, \quad \operatorname{gcd}(b, 15)=c \quad \text { and } \quad \operatorname{gcd}(a, c)=5 .
$$

2. Let x, y and z be positive real numbers with $x+y+z=3$.

Prove that at least one of the three numbers

$$
x(x+y-z), \quad y(y+z-x) \quad \text { or } \quad z(z+x-y)
$$

is less or equal 1.
(Karl Czakler)
3. Let $n \geq 3$ be a fixed integer. The numbers $1,2,3, \ldots, n$ are written on a board. In every move one chooses two numbers and replaces them by their arithmetic mean. This is done until only a single number remains on the board.
Determine the least integer that can be reached at the end by an appropriate sequence of moves.
(Theresia Eisenkölbl)
4. Let $A B C$ be an isosceles triangle with $A C=B C$ and $\angle A C B<60^{\circ}$. We denote the incenter and circumcenter by I and O, respectively. The circumcircle of triangle $B I O$ intersects the leg $B C$ also at point $D \neq B$.
(a) Prove that the lines $A C$ and $D I$ are parallel.
(b) Prove that the lines $O D$ and $I B$ are mutually perpendicular.

Working time: 4 hours.
Each problem is worth 8 points.

