$54^{\text {th }}$ Austrian Mathematical Olympiad<br>National Competition-Preliminary Round 29th April 2023

1. Let $a, b, c, d$ be real numbers with $0<a, b, c, d<1$ and $a+b+c+d=2$. Show that

$$
\sqrt{(1-a)(1-b)(1-c)(1-d)} \leq \frac{a c+b d}{2}
$$

Are there infinitely many cases of equality?
2. Let $A B C$ be a triangle. Let $P$ be the point on the extension of $B C$ beyond $B$ such that $B P=B A$. Let $Q$ be the point on the extension of $B C$ beyond $C$ such that $C Q=C A$.

Prove that the circumcenter $O$ of the triangle $A P Q$ lies on the angle bisector of the angle $\angle B A C$.
3. Let $n$ be a positive integer. What proportion of the non-empty subsets of $\{1,2, \ldots, 2 n\}$ has a smallest element that is odd?
(Birgit Vera Schmidt)
4. Determine all pairs of positive integers $(n, k)$ for which

$$
n!+n=n^{k}
$$

holds.
(Michael Reitmeir)

Working time: $4 \frac{1}{2}$ hours.
Each problem is worth 8 points.

