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Problem 1. Let α be a fixed real number.
Determine all functions f : R→ R satisfying

f(f(x+ y)f(x− y)) = x2 + αyf(y)

for all x, y ∈ R.
(Walther Janous)

Solution. We will show that for α = −1 the unique solution is f(x) = x and for other values of α there
is no solution.

Indeed, x = y = 0 yields f(f(0)2) = 0. Furthermore, x = 0 and y = f(0)2 imply f(0) = 0. Setting
y = x, we get f(0) = x2 + αxf(x). Now α = 0 immediately leads to a contradiction, so from now on
we assume α 6= 0. Division by x 6= 0 results in f(x) = −x/α for x 6= 0. Because of f(0) = 0, this
expression for f(x) is valid for x = 0, too. Replacing f with this expression in the original equation
gives (x2 − y2)/(−α)3 = x2 − y2 for all x, y which is equivalent to −α3 = 1, that is α = −1, and the
proof is complete.

(Theresia Eisenkölbl, Clemens Heuberger)

Problem 2. A necklace contains 2016 pearls, each of which has one of the colours black, green or blue.
In each step we replace simultaneously each pearl with a new pearl, where the colour of the new pearl is
determined as follows: If the two original neighbours were of the same colour, the new pearl has their
colour. If the neighbours had two different colours, the new pearl has the third colour.

(a) Is there such a necklace that can be transformed with such steps to a necklace of blue pearls if half
of the pearls were black and half of the pearls were green at the start?

(b) Is there such a necklace that can be transformed with such steps to a necklace of blue pearls if
thousand of the pearls were black at the start and the rest green?

(c) Is it possible to transform a necklace that contains exactly two adjacent black pearls and 2014 blue
pearls to a necklace that contains one green pearl and 2015 blue pearls?

(Theresia Eisenkölbl)

Solution. (a) Since 2016 is divisible by 4, we can alternatingly take two black and two green pearls.
In the first step, all pearls are already replaced by blue pearls.

(b) If we assign to each blue pearl the number 0, to each green pearl the number 1 and to each black
pearl the number 2, then it holds in each step that the new colour of a pearl modulo 3 is equal
to the negative sum of its two original neighbours. The new total sum of all colours modulo 3
therefore can be calculated by multiplying the old total sum of all colours with 2 and changing the
sign. But modulo 3, a multiplication with −2 is equivalent to a multiplication with 1, therefore
the total sum always remains the same modulo 3.

For a necklace with only blue pearls the total sum is 0. But for 1000 black and 1016 green pearls
it is 2000 + 1016 ≡ 1 (mod 3). Therefore, there does not exist an arrangement of 1000 black and
1016 green pearls that can be transformed into a necklace with only blue pearls using such steps.
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(c) Using the same assignment of numbers modulo 3, in each step the sum of all colours in even
positions becomes the sum of the colours in odd positions, and vice versa. If these sums are A
and B in the beginning, then at the end we still have these same two sums modulo 3, maybe with
switched positions.

But in the beginning, we have sums 2 and 2 modulo 3, because both among the even and among
the odd positions there is exactly one black pearl with value 2, and otherwise only blue pearls with
value 0. However, at the end we are supposed to have sums 1 and 0 because one of the two sums is
determined only by blue pearls with value 0, and the other by exactly one green pearl with value
1 and only blue pearls with value 0 otherwise. Therefore, it is not possible.

(Theresia Eisenkölbl)

Problem 3. Let (an)n≥0 be the sequence of rational numbers with a0 = 2016 and

an+1 = an +
2

an

for all n ≥ 0.
Show that the sequence does not contain a square of a rational number.

(Theresia Eisenkölbl)

Solution. We look at this sequence modulo 5. This is possible as long as an 6≡ 0 (mod 5) so that the
next element is defined modulo 5. If we start to compute the elements modulo 5 we obtain

a0 ≡ 1 (mod 5),

a1 ≡ 1 + 2 ≡ 3 (mod 5),

a2 ≡ 3 + 2 · 3−1 ≡ 3 + 2 · 2 ≡ 2 (mod 5),

a3 ≡ 3 (mod 5),

a4 ≡ 2 (mod 5),

...

So we see that after a0, the sequence just alternates between the values 2 and 3 modulo 5. These are
not quadratic residues modulo 5. Since a0 = 2016 is also not the square of a rational number, there is
indeed no square of a rational number in this sequence.

(Theresia Eisenkölbl)

Problem 4. (a) Determine the maximum M of x+ y + z where x, y and z are positive real numbers
with

16xyz = (x+ y)2(x+ z)2.

(b) Prove the existence of infinitely many triples (x, y, z) of positive rational numbers that satisfy
16xyz = (x+ y)2(x+ z)2 and x+ y + z =M .

(Karl Czakler)

Solution. (a) The given equation and the AM-GM-inequality imply

4
√
xyz = (x+ y)(x+ z) = x(x+ y + z) + yz ≥ 2

√
xyz(x+ y + z).

Therefore, 2 ≥
√
x+ y + z which gives 4 ≥ x+ y+ z. Since we will explicitly give infinitely many

triples with x+ y + z = 4 in the second part, M = 4 is the maximum.
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(b) For x + y + z = 4, equality must hold in the AM-GM-inequality of the first part, so we have
x(x+y+z) = yz and also x+y+z = 4. If we choose y = t with rational t we get 4x = t(4−x− t)
and therefore x = 4t−t2

4+t
and z = 4− x− y = 16−4t

4+t
. If we take 0 < t < 4 then all these expressions

are positive and rational and are a solution of the given equation.

The triples
(
4t−t2

4+t
, t, 16−4t

4+t

)
with rational 0 < t < 4 are infinitely many cases of equality.

(Karl Czakler)

Problem 5. Let ABC be an acute triangle. Let H denote its orthocenter and D, E and F the feet of
its altitudes from A, B and C, respectively. Let the common point of DF and the altitude through B
be P . The line perpendicular to BC through P intersects AB in Q. Furthermore, EQ intersects the
altitude through A in N .

Prove that N is the mid-point of AH.
(Karl Czakler)

Solution. See Figure 1. As usual, let β = ∠ABC and γ = ∠ACB. Since we know that ∠AFH =

A B

C

D

E

F

H

P

Q

N

Figure 1: Problem 5

∠AEH = 90◦ holds, the quadrilateral AFHE is cyclic, and because DA is parallel to PQ we obtain

∠FQP = ∠FAH = ∠FEH = ∠FEP.

It follows that QFPE is also cyclic. Since ∠AFC = ∠ADC = 90◦, AFDC is also cyclic, and we
have ∠QFP = ∠AFD = 180◦ − ∠ACD = 180◦ − γ. We therefore have ∠QEP = γ. From this,
we obtain ∠EAN = 90◦ − γ = ∠AEP − ∠QEP = ∠AEN , which shows us that triangle ANE is
isosceles. It therefore follows that N is the circumcenter of the right triangle AHE, and we therefore
have NA = NH, as claimed.

(Karl Czakler)

Problem 6. Let S = {1, 2, . . . , 2017}.
Find the maximal n with the property that there exist n distinct subsets of S such that for no two

subsets their union equals S.
(Gerhard Woeginger)
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Solution. Answer: n = 22016.
Proof:
There are 22016 subsets of S which do not contain 2017. The union of any two such subsets does not

contain 2017 and is thus a proper subset of S. Thus n ≥ 22016.
To show the other direction, we group the subsets of S into 22016 pairs in such a way that every

subset forms a pair with its complement. If n > 22016 then the n subsets would contain such a pair. Its
union would be S, contradiction.

Thus n = 22016.
(Gerhard Woeginger)
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