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Problem 1. Find all functions f : Z>0 → Z>0 with

a− f(b) | af(a)− bf(b) for all a, b ∈ Z>0.

(Theresia Eisenkölbl)

Answer. The only solution is the identity f(x) = x for all x ∈ Z>0.

Solution. For a = f(b), we immediately get that af(a)− bf(b) = 0.
Therefore,

f(b)(f(f(b))− b) = 0,

and we have f(f(b)) = b for all b ∈ Z>0 .
Now, we replace b with f(b) in the given relation and obtain

a− b | af(a)− bf(b) = (a− b)f(a) + b(f(a)− f(b)), .

from which we obtain
a− b | b(f(a)− f(b)).

For b = 1, we get
a− 1 | f(a)− f(1).

If we replace a with f(a), we get
f(a)− 1 | a− f(1).

This implies that for all a > f(1), we have f(a) − 1 ≤ a − f(1). If we had f(1) > 1, this would imply
f(a) < a for a > f(1) and therefore either a = f(f(a)) < f(a) < a, which is impossible, or f(a) ≤ f(1),
which cannot hold for infinitely many a because of f(f(a)) = a. Therefore, we have f(1) = 1 and
a− 1 = f(a)− 1, so that f has to be the identity. The identity clearly satisfies the given relation, so it
is the only solution.

(Theresia Eisenkölbl)

Problem 2. Let ABC be an acute, scalene triangle with orthocenter H, and let M be the midpoint
of segment AB, and w the angular bisector of angle ∠ACB. Let S be the intersection of w and the
perpendicular bisector of AB, and F the foot of the altitude from H onto w.

Prove that segments MS and MF are of equal length.
(Karl Czakler)

Solution. As usual, we will label the angles in the triangle at A, B and C with α, β and γ, respectively.
It is well-known that S as well as the reflection of H in the line AB are on the circumcircle of the

triangle ABC. We label the reflection of H with H ′.
In the following, we will work with oriented angles modulo 180°.
We have ∠SCH ′ = γ

2
− (90◦ − β). Using the angle sum in the right triangle FHC, we obtain

∠FHH ′ = β + γ
2
.

On the other hand, the inscribed angle theorem for the circumcircle of ABC gives ∠HH ′S =
∠CH ′S = ∠CBS = β + ∠ABS = β + ∠ACS = β + γ

2
.
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By definition of H ′, the reflection in AB maps H to H ′. Since the angles ∠HH ′S and ∠H ′HF
coincide up to orientation, the reflection also maps the line H ′S to the line HF .

Let S ′ be the image of S with respect to this reflection. Because of the previous observation, S ′

must be on the line HF . Therefore, the triangle FS ′S is a right triangle. This clearly implies that M is
the mid-point of the segment SS ′ and is therefore the circumcenter of triangle FS ′S. Thales’ theorem
implies MS = MF , as desired.

(Theresia Eisenkölbl, Josef Greilhuber)

Problem 3. Lisa writes a positive integer in the decimal system on a board and repeats the following
steps:

The last digit is deleted from the number on the board and then four times the deleted digit is added
to the remaining shorter number (or to 0 if the original number was a single digit). The result of this
calculation is now the new number on the board.

This is repeated until the first time she gets a number that has already been on the board.

(a) Show that the sequence of steps always terminates.

(b) What is the last number on the board if Lisa starts with the number 532022 − 1?

Example: If Lisa starts with the number 2022, she gets 202 + 4× 2 = 210 in the first step and then
subsequently

2022 7→ 210 7→ 21 7→ 6 7→ 24 7→ 18 7→ 33 7→ 15 7→ 21.

Since Lisa gets 21 a second time, she stops.
(Stephan Pfannerer)

Solution. Let f be the map defined by the given operation on the number. We can write a positive
integer x uniquely as 10a + b with a, b ∈ Z≥0 and 0 ≤ b ≤ 9, and get f(x) = f(10a + b) = a + 4b. We
denote with (xi)i≥0 the sequence of numbers obtained by Lisa if she starts with the positive integer x0.
The sequence is defined by the recursion xi+1 = f(xi).

(a) We first note that it is immediate by definition that xi ∈ Z>0 for all i ≥ 0 and the process is
therefore well-defined.

Now, we show that for xi ≥ 40, the next element in the sequence is smaller, i.e. xi > xi+1. We
write again xi = 10a + b as above. From 10a + b = xi > xi+1 = a + 4b, we obtain the equivalent
inequality 9a > 3b which is certainly true because a > 3 and b ≤ 9.
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Next, we prove that for xi ≤ 39, we also have xi+1 ≤ 39. This immediately follows from xi+1 =
f(xi) = f(10a+ b) = a+ 4b ≤ 3 + 4 · 9 = 39.

Therefore, there is a number N ≥ 0, such that xi ∈ {1, 2, . . . , 39} for all i ≥ N . These are just
finitely many possible values, so there are i ̸= j with xi = xj.

(b) The answer is 39. First, we observe that f(x) ≡ 4 · x (mod 39): Let x = 10a+ b, as before. Then
we get:

f(x) = a+ 4b ≡ 40a+ 4b = 4 · (10a+ b) = 4x (mod 39).

We calculate the residue of the starting number modulo 39. We have

532022 − 1 ≡ 12022 − 1 ≡ 0 (mod 13)

and similarly
532022 − 1 ≡ (−1)2022 − 1 ≡ 0 (mod 3),

so we get 39|532022 − 1 = x0. Using the above observation, we conclude that 39|xi for all i ≥ 0.

Let N be the smallest index with 0 < xN < 40. Since 39|xN , we must have xN = 39. Since xi is
strictly decreasing for i < N and f(39) = 39, the number 39 is the first one written twice on the
blackboard.

(Michael Drmota)

Problem 4. Decide if for every polynomial P of degree ≥ 1 with integer coefficients, there are infinitely
many primes that each divide a P (n) for a positive integer n.

(Walther Janous)

Answer. There are infinitely many such primes for every polynomial satisfying the conditions.

Solution. We write P (x) = amx
m + . . .+ a1x+ a0 with m ≥ 1, am ̸= 0 and integers aj, 0 ≤ j ≤ m.

• If a0 = 0, we have p | P (p) for every prime p.

• If a0 ̸= 0, we assume that there are only finitely many primes with the desired property. We label
them p1, . . . , pN (we have N ≥ 1, because the non-constant polynomial cannot take the values ±1
for all positive integers).

Let q be the product of these N primes. Then, we have for all positive integers k that

P (a0q
k) = am(a0q

k)m + . . .+ a1a0q
k + a0

⇐⇒ P (a0q
k) = a0(ama

m−1
0 qkm + . . .+ a1q

k + 1).

The expression in parentheses is clearly not divisible by any of the N primes. Therefore, it has to
take the values ±1, and we get

P (a0q
k) = ±a0.

As before, we can argue that the non-constant polynomial P cannot take just two values for
infinitely many arguments. This contradiction implies the existence of infinitely many primes with
the desired property.

(Walther Janous)
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Problem 5. Let ABC be an isosceles triangle with base AB.
We choose an interior point P of the altitude in C. The circle with diameter CP intersects the line

connecting B and P a second time in DP and the line connecting points A and C a second time in EP .
Prove that there exists a point F , such that for every choice of P the points DP , EP and F are

collinear.
(Walther Janous)

Answer. The point F with this property is the mid-point of AB.

Solution. Let M be the mid-point of AB. We want to prove that M is on all lines gP = DPEP and
therefore, the desired point F .

Figure 1: Problem 5

The points C, DP , EP and P lie on a circle by definition of DP and EP . By Thales’ theorem, we
get PEP ⊥ AEP and by definition of M , we get PM ⊥ AM . We obtain that AMPEP is also a cyclic
quadrilateral.

In the circumcircle of CDPEPP , we compute

∠(DPEP , AC) = ∠(DPEP , EPC) = ∠(DPP, PC) = ∠(BP,MC)

and in the circumcircle of AMPEP , we compute

∠(MEP , AC) = ∠(MEP , AEP ) = ∠(MP,AP ) = ∠(MC,AP ).

Since MC is the altitude of the isosceles triangle, we have ∠(BP,MC) = ∠(MC,AP ), and we obtain
∠(DPEP , AC) = ∠(MEP , AC).

Therefore, the points DP , EP and M are collinear independent of P , and M is the desired point F .
(Theresia Eisenkölbl)
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Problem 6. (a) Prove that a square with sidelength 1000 can be tiled with 31 squares such that at
least one of them has sidelength smaller than 1.

(b) Prove that there is also a tiling with 30 squares with the same properties.
(Walther Janous)

Solution. (a) We first divide the square into four squares with half the side-length. Then, we choose
one of them and divide it again into four smaller squares which gives a tiling with 7 squares. We
apply this method 10 times in total, each of which adds 3 squares to the number of squares in
the tiling, so we get a tiling with 1 + 10 · 3 = 31 squares. The four smallest have a side-length of
1000/210 < 1.

Figure 2: On the left, we see the tiling for question (a), on the right, we see the construction for
question (b) for a square with side-length 15.

(b) To be able to work with integer coordinates, we scale the 1000×1000-square to a 1023×1023-square
and we will scale the whole tiling back at the end. We divide the square into a 512× 512-square,
two 511× 511-squares and a region R1 which is a 512× 512-square Q1, where a 1× 1-square has
been removed. Therefore, we have used three squares and still have to tile the region R1.

Now, we divide Q1 into four smaller squares which divides the region R1 into three squares of
sidelength 252 plus a region R2 which is a 256 × 256-square Q2 where a 1 × 1-square has been
removed.

The eighth iteration of this argument will add three 2 × 2-squares plus a region R8, which gives
a total of 3 · 9 = 27 squares. Since R8 can be divided in three 1 × 1-squares, we have a tiling of
the 1023 × 1023-square into 30 squares where the three smallest have side-length 1. Scaling the
whole figure back to side-length 1000 gives a tiling of the desired type with the smallest side-length
1000/1023.

(Walther Janous)
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