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Problem 1. Determine all triples (a, b, c) of positive integers satisfying the conditions

gcd(a, 20) = b, (I)

gcd(b, 15) = c and (II)

gcd(a, c) = 5. (III)

(Richard Henner)

Solution. We use equations (I) und (II) in order to eliminate b and c as follows:

gcd(a, gcd(gcd(a, 20), 15)) = 5 ⇐⇒ gcd(a, a, 20, 15) = 5 ⇐⇒ gcd(a, 5) = 5 ⇐⇒ 5 | a.

Furthermore we determine b and c from (I) and (II): (I) yields b ∈ {5, 10, 20}. More speci�cally we have
b = 5 for a being odd, b = 10 for a ≡ 2 mod 4 and b = 20 for a ≡ 0 mod 4. In all three cases c = 5
follows from (II).
In total the solutions form the set {(20t, 20, 5), (20t− 10, 10, 5), (10t− 5, 5, 5)| t is a positive integer}.

(Walther Janous, Gerhard Kirchner)

Problem 2. Let x, y and z be positive real numbers with x+ y + z = 3.
Prove that at least one of the three numbers

x(x+ y − z), y(y + z − x) or z(z + x− y)

is less or equal 1.
(Karl Czakler)

Solution. Since the three expressions are cyclic, we may w. l. o. g. assume that x ≥ y, z. Consequently
we have x ≥ x+y+z

3
= 1. We now show that a := y(y + z − x) = y(3− 2x) satis�es a ≤ 1.

• Case a) : For 3
2
≤ x < 3 clearly a ≤ 0 < 1.

• Case b) : For 1 ≤ x < 3
2
the factor 3− 2x is positive. Therefore a ≤ x(3− 2x). Hence it su�ces

to prove x(3− 2x) ≤ 1, which is equivalent to 2x2 − 3x+ 1 ≥ 0, i. e. (2x− 1)(x− 1) ≥ 0.

This completes the proof.
(Walther Janous)

Problem 3. Let n ≥ 3 be a �xed integer. The numbers 1, 2, 3, . . . , n are written on a board. In every
move one chooses two numbers and replaces them by their arithmetic mean. This is done until only a
single number remains on the board.

Determine the least integer that can be reached at the end by an appropriate sequence of moves.
(Theresia Eisenkölbl)
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Solution. The answer is 2 for every n. Surely we cannot reach an integer less than 2, since 1 appears
only once and produces an arithmetic mean greater than 1, as soon as it is used.

On the other hand, we can prove by induction on k that the number a+ 1 can be reached from the
numbers a, a+ 1, . . . , a+ k by a sequence of permitted moves.

For k = 2 one replaces a and a+ 2 by a+ 1 and afterwards a+ 1 and a+ 1 by a single a+ 1.
For the induction step k → k + 1 one replaces a + 1, . . . , a + k + 1 by a + 2 and afterwards a and

a+ 2 by a+ 1.
In particular with a = 1 and k = n− 1 one achieves the desired result.

(Theresia Eisenkölbl)

Problem 4. Let ABC be an isosceles triangle with AC = BC and ∠ACB < 60 ◦. We denote the
incenter and circumcenter by I and O, respectively. The circumcircle of triangle BIO intersects the leg
BC also at point D 6= B.

(a) Prove that the lines AC and DI are parallel.

(b) Prove that the lines OD and IB are mutually perpendicular.

(Walther Janous)

Solution. Note that the condition ∠ACB < 60 ◦ guarentees that O lies between I and C.
a) We denote the angles of triangle ABC by α = ∠BAC, β = ∠ABC and γ = ∠ACB. Let K and

k be the circumcircles of ABC and BIO, respectively. The inscribed angle theorem for circle K yields:
∠BOC = 2α. Therefore we have ∠IOB = 180 ◦−2α and because of α = β we obtain ∠IOB = γ.
Furthermore the inscribed angle theorem for circle k gives ∠IDB = γ, whence �nally ID ‖ AC.
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b) We denote the point of intersection of lines OD by F and IB and the midpoint of AB by G.
Since IODB is cyclic, we have ∠IOD = 180 ◦−β/2, that is ∠DOC = β/2 or equivalently ∠FOI = β/2.
Furthermore ∠GIB = 90 ◦−β/2 implies ∠OIF = 90 ◦−β/2. Therefore ∠IFO = 90 ◦.

(Richard Henner)
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