$46^{\text {th }}$ Austrian Mathematical Olympiad
Regional Competition (Qualifying Round) - Solutions
March 26, 2015

Problem 1. Determine all triples (a, b, c) of positive integers satisfying the conditions

$$
\begin{align*}
\operatorname{gcd}(a, 20) & =b, \tag{I}\\
\operatorname{gcd}(b, 15) & =c \tag{II}\\
\operatorname{gcd}(a, c) & =5 . \tag{III}
\end{align*}
$$

(Richard Henner)

Solution. We use equations (II) und (II) in order to eliminate b and c as follows:

$$
\operatorname{gcd}(a, \operatorname{gcd}(\operatorname{gcd}(a, 20), 15))=5 \quad \Longleftrightarrow \quad \operatorname{gcd}(a, a, 20,15)=5 \quad \Longleftrightarrow \quad \operatorname{gcd}(a, 5)=5 \quad \Longleftrightarrow \quad 5 \mid a .
$$

Furthermore we determine b and c from (II) and (II): (II) yields $b \in\{5,10,20\}$. More specifically we have $b=5$ for a being odd, $b=10$ for $a \equiv 2 \bmod 4$ and $b=20$ for $a \equiv 0 \bmod 4$. In all three cases $c=5$ follows from (II).
In total the solutions form the set $\{(20 t, 20,5),(20 t-10,10,5),(10 t-5,5,5) \mid t$ is a positive integer $\}$.
(Walther Janous, Gerhard Kirchner)

Problem 2. Let x, y and z be positive real numbers with $x+y+z=3$.
Prove that at least one of the three numbers

$$
x(x+y-z), \quad y(y+z-x) \quad \text { or } \quad z(z+x-y)
$$

is less or equal 1.

Solution. Since the three expressions are cyclic, we may w. l. o. g. assume that $x \geq y, z$. Consequently we have $x \geq \frac{x+y+z}{3}=1$. We now show that $a:=y(y+z-x)=y(3-2 x)$ satisfies $a \leq 1$.

- Case a) : For $\frac{3}{2} \leq x<3$ clearly $a \leq 0<1$.
- Case b) : For $1 \leq x<\frac{3}{2}$ the factor $3-2 x$ is positive. Therefore $a \leq x(3-2 x)$. Hence it suffices to prove $x(3-2 x) \leq 1$, which is equivalent to $2 x^{2}-3 x+1 \geq 0$, i. e. $(2 x-1)(x-1) \geq 0$.

This completes the proof.
(Walther Janous)

Problem 3. Let $n \geq 3$ be a fixed integer. The numbers $1,2,3, \ldots, n$ are written on a board. In every move one chooses two numbers and replaces them by their arithmetic mean. This is done until only a single number remains on the board.

Determine the least integer that can be reached at the end by an appropriate sequence of moves.
(Theresia Eisenkölbl)

Solution. The answer is 2 for every n. Surely we cannot reach an integer less than 2 , since 1 appears only once and produces an arithmetic mean greater than 1 , as soon as it is used.

On the other hand, we can prove by induction on k that the number $a+1$ can be reached from the numbers $a, a+1, \ldots, a+k$ by a sequence of permitted moves.

For $k=2$ one replaces a and $a+2$ by $a+1$ and afterwards $a+1$ and $a+1$ by a single $a+1$.
For the induction step $k \rightarrow k+1$ one replaces $a+1, \ldots, a+k+1$ by $a+2$ and afterwards a and $a+2$ by $a+1$.

In particular with $a=1$ and $k=n-1$ one achieves the desired result.
(Theresia Eisenkölbl)

Problem 4. Let $A B C$ be an isosceles triangle with $A C=B C$ and $\angle A C B<60^{\circ}$. We denote the incenter and circumcenter by I and O, respectively. The circumcircle of triangle BIO intersects the leg $B C$ also at point $D \neq B$.
(a) Prove that the lines $A C$ and DI are parallel.
(b) Prove that the lines $O D$ and IB are mutually perpendicular.
(Walther Janous)

Solution. Note that the condition $\angle A C B<60^{\circ}$ guarentees that O lies between I and C.
a) We denote the angles of triangle $A B C$ by $\alpha=\angle B A C, \beta=\angle A B C$ and $\gamma=\angle A C B$. Let K and k be the circumcircles of $A B C$ and $B I O$, respectively. The inscribed angle theorem for circle K yields: $\angle B O C=2 \alpha$. Therefore we have $\angle I O B=180^{\circ}-2 \alpha$ and because of $\alpha=\beta$ we obtain $\angle I O B=\gamma$. Furthermore the inscribed angle theorem for circle k gives $\angle I D B=\gamma$, whence finally $I D \| A C$.

b) We denote the point of intersection of lines $O D$ by F and $I B$ and the midpoint of $A B$ by G. Since $I O D B$ is cyclic, we have $\angle I O D=180^{\circ}-\beta / 2$, that is $\angle D O C=\beta / 2$ or equivalently $\angle F O I=\beta / 2$. Furthermore $\angle G I B=90^{\circ}-\beta / 2$ implies $\angle O I F=90^{\circ}-\beta / 2$. Therefore $\angle I F O=90^{\circ}$.
(Richard Henner)

