

$53^{\text {rd }}$ Austrian Mathematical Olympiad
 Regional Competition-Solutions
 31st March 2022

Problem 1. Let a and b be positive real numbers with $a^{2}+b^{2}=\frac{1}{2}$. Prove that

$$
\frac{1}{1-a}+\frac{1}{1-b} \geq 4
$$

When does equality hold?
(Walther Janous)

Solution. Expansion and algebraic transformation lead to

$$
3(a+b) \geq 2+4 a b .
$$

Squaring the inequality - the terms on both sides are postive - gives the equivalent inequality

$$
9\left(a^{2}+b^{2}+2 a b\right) \geq 4+16 a b+16 a^{2} b^{2} .
$$

Via $a^{2}+b^{2}=\frac{1}{2}$, we obtain

$$
\Longleftrightarrow \begin{aligned}
9\left(\frac{1}{2}+2 a b\right) & \geq 4+16 a b+16 a^{2} b^{2} . \\
\Longleftrightarrow 0 & \geq 32 a^{2} b^{2}-4 a b-1
\end{aligned}
$$

and therefore

$$
0 \geq\left(a b-\frac{1}{4}\right)(32 a b+4)
$$

Because

$$
a b \leq \frac{a^{2}+b^{2}}{2}=\frac{1}{4},
$$

the first factor is less than or equal to 0 . As the second factor is positive, the inequality is true, and equality holds for $a=b=\frac{1}{2}$.
(Karl Czakler)

Problem 2. Determine the number of ten-digit positive integers with the following properties:

- Each of the digits $0,1,2, \ldots, 8$ and 9 is contained exactly once.
- Each digit, except 9, has a neighbouring digit that is larger than it.
(Note. For example, in the number 1230, the digits 1 and 3 are the neighbouring digits of 2 and 2 and 0 are the neighbouring digits of 3. The digits 1 and 0 have only one neighbouring digit.)
(Karl Czakler)
Answer. There are 256 numbers with the required properties.
Solution. Let A be a ten-digit number with the desired properties. Let 10^{k} be the place value of the digit 9 with $k \in\{0,1,2 \ldots, 8,9\}$. All the digits of the number A to the left of 9 must be arranged in ascending order while all the digits to the right of 9 must be arranged in descending order. This implies that the digit 0 can only occur in the unit position and therefore the digit 9 cannot be in the unit position, i.e. $k>0$ holds.

We can distinguish the following cases:

- For $k=9$, there is only one number, namely 9876543210.
- For $k=8$, there are $\binom{8}{1}=8$ numbers, as one of the remaining 8 digits must be chosen, which is placed left to 9 . One example is the number 3987654210.
- For $k=7$, there are $\binom{8}{2}=28$ numbers, as there are $\binom{8}{2}$ possibilities of choosing 2 out of the remaining 8 digits, which are placed left to 9 . Their order is already determined by this choice, as they must be arranged in ascending order. One example is the number 1498765320.
- According to the same consideration for $2 \leq k \leq 6$, there are $\binom{8}{9-k}$ possibilities (numbers) each.
- For $k=1$, there exists only one $\left(1=\binom{8}{8}\right)$ number, namely 1234567890 .

Accordingly, there exist a total of

$$
\binom{8}{0}+\binom{8}{1}+\binom{8}{2}+\cdots+\binom{8}{8}=2^{8}=256
$$

numbers with the desired properties.
(Karl Czakler)

Problem 3. Let $A B C$ denote a triangle with $A C \neq B C$. Let I and U denote the incenter and circumcenter of the triangle $A B C$, respectively. The incircle touches $B C$ and $A C$ in the points D and E, respectively. The circumcircles of the triangles $A B C$ and $C D E$ intersect in the two points C and P.

Prove that the common point S of the lines $C U$ and PI lies on the circumcircle of the triangle $A B C$. (Karl Czakler)

Solution. Let S be the common point of $C U$ and $P I$, see figure 1 .
By Thales' theorem, we obtain that I lies on the circumcircle of the triangle $C D E$. Therefore, the following holds:

$$
90^{\circ}=\angle C D I=\angle C P I .
$$

Thus, the triangle $C P S$ is right-angled and we obtain

$$
U C=U P=U S
$$

Therefore, the point S lies on the circumcircle of the triangle $A B C$.
(Karl Czakler)

Problem 4. We are given the set

$$
M=\left\{-2^{2022},-2^{2021}, \ldots,-2^{2},-2,-1,1,2,2^{2}, \ldots, 2^{2021}, 2^{2022}\right\} .
$$

Let T be a subset of M, such that neighbouring numbers have the same difference when the elements are ordered by size.
(a) Determine the maximum number of elements that such a set T can contain.
(b) Determine all sets T with the maximum number of elements.

Figure 1: Problem 3

Solution. (a) First of all, we prove that a set T can contain at most two elements with the same sign. Assume that $2^{a}<2^{b}<2^{c}$ are three elements with the same (positive) sign. This implies both $a<b<c$ and

$$
2^{b}-2^{a}=2^{c}-2^{b} \Longleftrightarrow 2^{a}\left(2^{b-a}-1\right)=2^{b}\left(2^{c-b}-1\right)
$$

Based on the unique prime factorisation, $a=b$ would therefore hold, which yields a contradiction. Because three negative numbers are also excluded with the same argument, there can never be more than two numbers in the set T with the same sign, i.e. a set T can contain at most four elements.
Let $-2^{a}<-2^{b}<2^{c}<2^{d}$ be the elements of T. In particular, $a>b$ and $c<d$ hold as well as

$$
-2^{b}-\left(-2^{a}\right)=2^{c}-\left(-2^{b}\right) \Longleftrightarrow 2^{a}-2^{b}=2^{c}+2^{b} \Longleftrightarrow 2^{a}-2^{c}=2^{b+1}
$$

This equality implies that $a>c$. As $a>b$ (and equivalently $a \geq b+1$) we obtain that 2^{b+1} is a divisor of 2^{a}. Therefore, 2^{b+1} is also a divisor of 2^{c}. This implies $c \geq b+1$. Hence, the equation is equivalent to

$$
2^{a-b-1}-2^{c-b-1}=1
$$

with $a-b-1>c-b-1 \geq 0$. If $c-b-1>0$ holds, the left side of the equation would be divisible by 2 , which yields a contradiction. Therefore, $c=b+1$ holds and the equation is equivalent to

$$
2^{a-b-1}-1=1 \Longleftrightarrow 2^{a-b-1}=2 \Longleftrightarrow a-b-1=1 \Longleftrightarrow a=b+2
$$

We obtain that the elements of T have to be of the form $-2^{b+2}<-2^{b}<2^{b+1}<2^{d}$. But as furthermore

$$
2^{b+1}-\left(-2^{b}\right)=2^{d}-2^{b+1} \Longleftrightarrow 3 \cdot 2^{b}=2^{b+1}\left(2^{d-b-1}-1\right)
$$

has to hold, this is a contradiction. In a similar way we obtain the following: If one assumes two positive numbers being in the set T, it can contain at most one negative number. This shows that 3 is the maximum number of elements that a set T can contain.
(b) It follows immediately that the sets T

- either consist of the three numbers $-2^{b+2},-2^{b}$ und 2^{b+1},
- or consist of the three numbers $-2^{b+1}, 2^{b}$ und 2^{b+2},
with $0 \leq b \leq 2020$.

