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Problem 1. Let a and b be positive real numbers with a2 + b2 = 1
2
. Prove that

1

1− a
+

1

1− b
≥ 4.

When does equality hold?
(Walther Janous)

Solution. Expansion and algebraic transformation lead to

3(a+ b) ≥ 2 + 4ab.

Squaring the inequality - the terms on both sides are postive - gives the equivalent inequality

9(a2 + b2 + 2ab) ≥ 4 + 16ab+ 16a2b2.

Via a2 + b2 = 1
2
, we obtain

9(1
2
+ 2ab) ≥ 4 + 16ab+ 16a2b2.

⇐⇒ 0 ≥ 32a2b2 − 4ab− 1

and therefore
0 ≥ (ab− 1

4
)(32ab+ 4).

Because
ab ≤ a2 + b2

2
=

1

4
,

the first factor is less than or equal to 0. As the second factor is positive, the inequality is true, and
equality holds for a = b = 1

2
.

(Karl Czakler)

Problem 2. Determine the number of ten-digit positive integers with the following properties:

• Each of the digits 0, 1, 2, . . . , 8 and 9 is contained exactly once.

• Each digit, except 9, has a neighbouring digit that is larger than it.

(Note. For example, in the number 1230, the digits 1 and 3 are the neighbouring digits of 2 and 2 and
0 are the neighbouring digits of 3. The digits 1 and 0 have only one neighbouring digit.)

(Karl Czakler)

Answer. There are 256 numbers with the required properties.

Solution. Let A be a ten-digit number with the desired properties. Let 10k be the place value of the
digit 9 with k ∈ {0, 1, 2 . . . , 8, 9}. All the digits of the number A to the left of 9 must be arranged
in ascending order while all the digits to the right of 9 must be arranged in descending order. This
implies that the digit 0 can only occur in the unit position and therefore the digit 9 cannot be in the
unit position, i.e. k > 0 holds.

We can distinguish the following cases:

1



• For k = 9, there is only one number, namely 9876543210.

• For k = 8, there are
(
8
1

)
= 8 numbers, as one of the remaining 8 digits must be chosen, which is

placed left to 9. One example is the number 3987654210.

• For k = 7, there are
(
8
2

)
= 28 numbers, as there are

(
8
2

)
possibilities of choosing 2 out of the

remaining 8 digits, which are placed left to 9. Their order is already determined by this choice, as
they must be arranged in ascending order. One example is the number 1498765320.

• According to the same consideration for 2 ≤ k ≤ 6, there are
(

8
9−k

)
possibilities (numbers) each.

• For k = 1, there exists only one ( 1 =
(
8
8

)
) number, namely 1234567890.

Accordingly, there exist a total of(
8

0

)
+

(
8

1

)
+

(
8

2

)
+ · · ·+

(
8

8

)
= 28 = 256

numbers with the desired properties.
(Karl Czakler)

Problem 3. Let ABC denote a triangle with AC ̸= BC. Let I and U denote the incenter and
circumcenter of the triangle ABC, respectively. The incircle touches BC and AC in the points D
and E, respectively. The circumcircles of the triangles ABC and CDE intersect in the two points C
and P .

Prove that the common point S of the lines CU and PI lies on the circumcircle of the triangle ABC.
(Karl Czakler)

Solution. Let S be the common point of CU and PI, see figure 1.
By Thales’ theorem, we obtain that I lies on the circumcircle of the triangle CDE. Therefore, the

following holds:
90◦ = ∠CDI = ∠CPI.

Thus, the triangle CPS is right-angled and we obtain

UC = UP = US.

Therefore, the point S lies on the circumcircle of the triangle ABC.
(Karl Czakler)

Problem 4. We are given the set

M = {−22022,−22021, . . . ,−22,−2,−1, 1, 2, 22, . . . , 22021, 22022}.

Let T be a subset of M , such that neighbouring numbers have the same difference when the elements are
ordered by size.

(a) Determine the maximum number of elements that such a set T can contain.

(b) Determine all sets T with the maximum number of elements.

(Walther Janous)
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Figure 1: Problem 3

Solution. (a) First of all, we prove that a set T can contain at most two elements with the same sign.
Assume that 2a < 2b < 2c are three elements with the same (positive) sign. This implies both
a < b < c and

2b − 2a = 2c − 2b ⇐⇒ 2a(2b−a − 1) = 2b(2c−b − 1).

Based on the unique prime factorisation, a = b would therefore hold, which yields a contradiction.
Because three negative numbers are also excluded with the same argument, there can never be
more than two numbers in the set T with the same sign, i.e. a set T can contain at most four
elements.

Let −2a < −2b < 2c < 2d be the elements of T . In particular, a > b and c < d hold as well as

−2b − (−2a) = 2c − (−2b) ⇐⇒ 2a − 2b = 2c + 2b ⇐⇒ 2a − 2c = 2b+1.

This equality implies that a > c. As a > b (and equivalently a ≥ b + 1) we obtain that 2b+1 is a
divisor of 2a. Therefore, 2b+1 is also a divisor of 2c. This implies c ≥ b+ 1. Hence, the equation is
equivalent to

2a−b−1 − 2c−b−1 = 1

with a− b−1 > c− b−1 ≥ 0. If c− b−1 > 0 holds, the left side of the equation would be divisible
by 2, which yields a contradiction. Therefore, c = b+ 1 holds and the equation is equivalent to

2a−b−1 − 1 = 1 ⇐⇒ 2a−b−1 = 2 ⇐⇒ a− b− 1 = 1 ⇐⇒ a = b+ 2.

We obtain that the elements of T have to be of the form −2b+2 < −2b < 2b+1 < 2d. But as
furthermore

2b+1 − (−2b) = 2d − 2b+1 ⇐⇒ 3 · 2b = 2b+1(2d−b−1 − 1)

has to hold, this is a contradiction. In a similar way we obtain the following: If one assumes two
positive numbers being in the set T , it can contain at most one negative number. This shows that
3 is the maximum number of elements that a set T can contain.
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(b) It follows immediately that the sets T

• either consist of the three numbers −2b+2, −2b und 2b+1,

• or consist of the three numbers −2b+1, 2b und 2b+2,

with 0 ≤ b ≤ 2020.
(Walther Janous)
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