49 ${ }^{\text {th }}$ Austrian Mathematical Olympiad
 Beginners' Competition-Solutions
 12th June 2018

Problem 1. Let a, b and c denote positive real numbers. Prove that

$$
\frac{a}{c}+\frac{c}{b} \geq \frac{4 a}{a+b}
$$

When does equality hold?
(Walther Janous)
Solution. (Gerhard Kirchner) Multiplication by bc and completing squares yields

$$
\left(c-\frac{2 a b}{a+b}\right)^{2}+a b\left(\frac{a-b}{a+b}\right)^{2} \geq 0
$$

Equality holds if $a=b$ and $c=\frac{2 a b}{a+b}$, i. e. for $a=b=c$.
Problem 2. Let $A B C$ be an acute-angled triangle, M the midpoint of the side $A C$ and F the foot on $A B$ of the altitude through the vertex C.
Prove that $A M=A F$ holds if and only if $\angle B A C=60^{\circ}$.

Solution. (Karl Czakler) We will prove the two directions of the equivalence separately.

- Let $A M=A F$.

Since $\triangle A C F$ is rectangular, the Thales theorem gives $A M=M F$. Hence the triangle $A M F$ is equilateral and therefore $\angle B A C=60^{\circ}$.

- Now let $\angle B A C=60^{\circ}$.

Since $\triangle A C F$ is rectangular, we again have $A M=M F$. Now $\triangle A M F$ is isosceles and the base angle is $\angle B A C=\angle F A M=60^{\circ}$. Thus, the other base angle $\angle A F M$ also equals 60°. Hence all angles are 60°. Therefore, $\triangle A M F$ is equilateral and we have $A M=A F$.

Problem 3. For a given integer $n \geq 4$ we examine whether there exists a table with three rows and n columns which can be filled by the numbers 1, 2, ..., 3n such that

- each row totals to the same $\operatorname{sum} z$ and
- each column totals to the same sum s.

Prove:

(a) If n is even, such a table does not exist.
(b) If $n=5$, such a table does exist.
(Gerhard J. Woeginger)
Solution. (Gerhard Kirchner)

1. Summing up all entries we get

$$
1+2+\ldots+3 n=\frac{3 n(3 n+1)}{2}=3 z=n s
$$

Hence $s=\frac{3(3 n+1)}{2}$. If n is even, then $3 n+1$ and hence also $3(3 n+1)$ are odd. Therefore s is not an integer, a contradiction.
2. For $n=5$ we get $s=24$ and $z=40$. For example the following table fulfills the conditions:

15	6	2	7	10
8	4	13	12	3
1	14	9	5	11

Problem 4. For a positive integer n we denote by $d(n)$ the number of positive divisors of n and by $s(n)$ the sum of these divisors. For example, d(2018) is equal to 4 since 2018 has four divisors (1, 2, 1009, 2018) and $s(2018)=1+2+1009+2018=3030$.

Determine all positive integers x such that $s(x) \cdot d(x)=96$.
(Richard Henner)
Solution. (Clemens Heuberger) We note that $d(1) s(1)=1$. For all $x \geq 2$, we have $d(x) \geq 2$ and $s(x) \geq x$. Thus $d(x) s(x)=96$ implies that $2 x \leq 96$ and thus $x \leq 48$. Checking all remaining cases $2 \leq x \leq 48$ leads to the solutions $x \in\{14,15,47\}$. Of course, the number of cases to consider can be reduced by more refined case distinctions, e.g. with respect to $d(x)$.

